Перевод: с английского на все языки

со всех языков на английский

apprentice workshop

  • 1 apprentice workshop

    apprentice workshop PERS Lehrwerkstätte f, Lehrwerkstatt f

    Englisch-Deutsch Fachwörterbuch der Wirtschaft > apprentice workshop

  • 2 apprentice training workshop

    < did> ■ Ausbildungswerkstatt f

    English-german technical dictionary > apprentice training workshop

  • 3 Watt, James

    [br]
    b. 19 January 1735 Greenock, Renfrewshire, Scotland
    d. 19 August 1819 Handsworth Heath, Birmingham, England
    [br]
    Scottish engineer and inventor of the separate condenser for the steam engine.
    [br]
    The sixth child of James Watt, merchant and general contractor, and Agnes Muirhead, Watt was a weak and sickly child; he was one of only two to survive childhood out of a total of eight, yet, like his father, he was to live to an age of over 80. He was educated at local schools, including Greenock Grammar School where he was an uninspired pupil. At the age of 17 he was sent to live with relatives in Glasgow and then in 1755 to London to become an apprentice to a mathematical instrument maker, John Morgan of Finch Lane, Cornhill. Less than a year later he returned to Greenock and then to Glasgow, where he was appointed mathematical instrument maker to the University and was permitted in 1757 to set up a workshop within the University grounds. In this position he came to know many of the University professors and staff, and it was thus that he became involved in work on the steam engine when in 1764 he was asked to put in working order a defective Newcomen engine model. It did not take Watt long to perceive that the great inefficiency of the Newcomen engine was due to the repeated heating and cooling of the cylinder. His idea was to drive the steam out of the cylinder and to condense it in a separate vessel. The story is told of Watt's flash of inspiration as he was walking across Glasgow Green one Sunday afternoon; the idea formed perfectly in his mind and he became anxious to get back to his workshop to construct the necessary apparatus, but this was the Sabbath and work had to wait until the morrow, so Watt forced himself to wait until the Monday morning.
    Watt designed a condensing engine and was lent money for its development by Joseph Black, the Glasgow University professor who had established the concept of latent heat. In 1768 Watt went into partnership with John Roebuck, who required the steam engine for the drainage of a coal-mine that he was opening up at Bo'ness, West Lothian. In 1769, Watt took out his patent for "A New Invented Method of Lessening the Consumption of Steam and Fuel in Fire Engines". When Roebuck went bankrupt in 1772, Matthew Boulton, proprietor of the Soho Engineering Works near Birmingham, bought Roebuck's share in Watt's patent. Watt had met Boulton four years earlier at the Soho works, where power was obtained at that time by means of a water-wheel and a steam engine to pump the water back up again above the wheel. Watt moved to Birmingham in 1774, and after the patent had been extended by Parliament in 1775 he and Boulton embarked on a highly profitable partnership. While Boulton endeavoured to keep the business supplied with capital, Watt continued to refine his engine, making several improvements over the years; he was also involved frequently in legal proceedings over infringements of his patent.
    In 1794 Watt and Boulton founded the new company of Boulton \& Watt, with a view to their retirement; Watt's son James and Boulton's son Matthew assumed management of the company. Watt retired in 1800, but continued to spend much of his time in the workshop he had set up in the garret of his Heathfield home; principal amongst his work after retirement was the invention of a pantograph sculpturing machine.
    James Watt was hard-working, ingenious and essentially practical, but it is doubtful that he would have succeeded as he did without the business sense of his partner, Matthew Boulton. Watt coined the term "horsepower" for quantifying the output of engines, and the SI unit of power, the watt, is named in his honour.
    [br]
    Principal Honours and Distinctions
    FRS 1785. Honorary LLD, University of Glasgow 1806. Foreign Associate, Académie des Sciences, Paris 1814.
    Further Reading
    H.W.Dickinson and R Jenkins, 1927, James Watt and the Steam Engine, Oxford: Clarendon Press.
    L.T.C.Rolt, 1962, James Watt, London: B.T. Batsford.
    R.Wailes, 1963, James Watt, Instrument Maker (The Great Masters: Engineering Heritage, Vol. 1), London: Institution of Mechanical Engineers.
    IMcN

    Biographical history of technology > Watt, James

  • 4 AWD

    2) Автомобильный термин: all-wheel drive, привод на все колеса
    5) Пищевая промышленность: A Wicked Donut
    6) Расширение файла: At Work Document, Document (FaxView - Microsoft Fax At Work)
    7) Должность: Apprentice Water Dog, Author, Writer, Dreamer
    8) Программное обеспечение: Absolute Working Directory, Automatic Work Distribution

    Универсальный англо-русский словарь > AWD

  • 5 awd

    2) Автомобильный термин: all-wheel drive, привод на все колеса
    5) Пищевая промышленность: A Wicked Donut
    6) Расширение файла: At Work Document, Document (FaxView - Microsoft Fax At Work)
    7) Должность: Apprentice Water Dog, Author, Writer, Dreamer
    8) Программное обеспечение: Absolute Working Directory, Automatic Work Distribution

    Универсальный англо-русский словарь > awd

  • 6 Bosch, Robert August

    [br]
    b. 23 September 1861 Albeck, near Ulm, Germany
    d. 9 March 1942 Stuttgart, Germany
    [br]
    German engineer, industrialist and pioneer of internal combustion engine electrical systems.
    [br]
    Robert was the eighth of twelve children of the landlord of a hotel in the village of Albeck. He wanted to be a botanist and zoologist, but at the age of 18 he was apprenticed as a precision mechanic. He travelled widely in the south of Germany, which is unusual for an apprenticeship. In 1884, he went to the USA, where he found employment with Thomas A. Edison and his colleague, the German electrical engineer Siegmund Bergmann. During this period he became interested and involved in the rights of workers.
    In 1886 he set up his own workshop in Stuttgart, having spent a short time with Siemens in England. He built up a sound reputation for quality, but the firm outgrew its capital and in 1892 he had to sack nearly all his employees. Fortunately, among the few that he was able to retain were Arnold Zähringer, who later became Manager, and an apprentice, Gottlieb Harold. These two, under Bosch, were responsible for the development of the low-tension (1897) and the high-tension (1902) magneto. They also developed the Bosch sparking plug, again in 1902. The distributor for multi-cylinder engines followed in 1910. These developments, with a strong automotive bias, were stimulated by Bosch's association with Frederick Simms, an Englishman domiciled in Hamburg, who had become a director of Daimler in Canstatt and had secured the UK patent rights of the Daimler engine. Simms went on to invent, in about 1898, a means of varying ignition timing with low-tension magnetos.
    It must be emphasized, as pointed out above, that the invention of neither type of magneto was due to Bosch. Nikolaus Otto introduced a crude low-tension magneto in 1884, but it was not patented in Germany, while the high-tension magneto was invented by Paul Winand, a nephew of Otto's partner Eugen Langen, in 1887, this patent being allowed to lapse in 1890.
    Bosch's social views were advanced for his time. He introduced an eight-hour day in 1906 and advocated industrial arbitration and free trade, and in 1932 he wrote a book on the prevention of world economic crises, Die Verhütung künftiger Krisen in der Weltwirtschaft. Other industrialists called him the "Red Bosch" because of his short hours and high wages; he is reputed to have replied, "I do not pay good wages because I have a lot of money, I have a lot of money because I pay good wages." The firm exists to this day as the giant multi-national company Robert Bosch GmbH, with headquarters still in Stuttgart.
    [br]
    Further Reading
    T.Heuss, 1994, Robert Bosch: His Life and Achievements (trans. S.Gillespie and J. Kapczynski), New York: Henry Holt \& Co.
    JB

    Biographical history of technology > Bosch, Robert August

  • 7 Johansson, Carl Edvard

    [br]
    b. 15 March 1864 Orebro, Sweden
    d. 30 September 1943 Eskilstuna, Sweden
    [br]
    Swedish metrologist and inventor of measuring-gauge blocks.
    [br]
    Carl Edvard Johansson was first apprenticed to a shoemaker, but he soon abandoned that career. In 1882 he went to America to join his brother Arvid working at a sawmill in the summer; in winter the brothers obtained further general education at the Gustavus Adolphus College at St Peter, Minnesota. They returned to Sweden in November 1884 and in the following year Carl obtained employment with a small engineering firm which rented a workshop in the government small-arms factory at Eskilstuna. In his spare time he attended the Eskilstuna Technical College and in 1888 he was accepted as an apprentice armourer inspector. After completion of his apprenticeship he was appointed an armourer inspector, and it was in his work of inspection that he realized that the large number of gauges then required could be reduced if several accurate gauges could be used in combination. This was in 1896, and the first set of gauges was made for use in the rifle factory. With these, any dimension between 1 mm and 201 mm could be made up to the nearest 0.01 mm, the gauges having flat polished surfaces that would adhere together by "wringing". Johansson obtained patents for the system from 1901, but it was not until c.1907 that the sets of gauges were marketed generally. Gauges were made in inch units for Britain and America—slightly different as the standards were not then identical. Johansson formed his own company to manufacture the gauges in 1910, but he did not give up his post in the rifle factory until 1914. By the 1920s Johansson gauges were established as the engineering dimensional standards for the whole world; the company also made other precision measuring instruments such as micrometers and extensometers. A new company, C.E.Johansson Inc., was set up in America for manufacture and sales, and the gauges were extensively used in the American automobile industry. Henry Ford took a special interest and Johansson spent several years in a post with the Ford Motor Company in Detroit, Michigan, until he returned to Sweden in 1936.
    [br]
    Principal Honours and Distinctions
    Honorary Doctorates, Gustavus Adolphus College, St Peter and Wayne University, Detroit. Swedish Engineering Society John Ericsson Gold Medal. American Society of Mechanical Engineers Gold Medal.
    Further Reading
    K.J.Hume, 1980, A History of Engineering Metrology, London, pp. 54–66 (a short biography).
    RTS

    Biographical history of technology > Johansson, Carl Edvard

  • 8 Ramsden, Jesse

    [br]
    b. 6 October 1735 (?) Halifax, Yorkshire, England
    d. 5 November 1800 Brighton, Sussex, England
    [br]
    English instrument-maker who developed machines for accurately measuring angular and linear scales.
    [br]
    Jesse Ramsden was the son of an innkeeper but received a good general education: after attending the free school at Halifax, he was sent at the age of 12 to his uncle for further study, particularly in mathematics. At the age of 16 he was apprenticed to a cloth-worker in Halifax and on completion of the apprenticeship in 1755 he moved to London to work as a clerk in a cloth warehouse. In 1758 he became an apprentice in the workshop of a London mathematical instrument-maker named Burton. He quickly gained the skill, particularly in engraving, and by 1762 he was able to set up on his own account. He married in 1765 or 1766 the youngest daughter of the optician John Dollond FRS (1706– 61) and received a share of Dollond's patent for making achromatic lenses.
    Ramsden's experience and reputation increased rapidly and he was generally regarded as the leading instrument-maker of his time. He opened a shop in the Haymarket and transferred to Piccadilly in 1775. His staff increased to about sixty workers and apprentices, and by 1789 he had constructed nearly 1,000 sextants as well as theodolites, micrometers, balances, barometers, quadrants and other instruments.
    One of Ramsden's most important contributions to precision measurement was his development of machines for obtaining accurate division of angular and linear scales. For this work he received a premium from the Commissioners of the Board of Longitude, who published his descriptions of the machines. For the trigonometrical survey of Great Britain, initiated by General William Roy FRS (1726–90) and continued by the Board of Ordnance, Ramsden supplied a 3 ft (91 cm) theodolite and steel measuring chains, and was also engaged to check the glass tubes used to measure the fundamental base line.
    [br]
    Principal Honours and Distinctions
    FRS 1786; Royal Society Copley Medal 1795. Member, Imperial Academy of St Petersburg 1794. Member, Smeatonian Society of Civil Engineers 1793.
    Bibliography
    Instruments, London.
    1779, "Description of two new micrometers", Philosophical Transactions of the Royal Society 69:419–31.
    1782, "A new construction of eyeglasses for such telescopes as may be applied to mathematical instruments", Philosophical Transactions of the Royal Society 73:94–99.
    Further Reading
    R.S.Woodbury, 1961, History of the Lathe to 1850, Cleveland, Ohio; W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (both provide a brief description of Ramsden's dividing machines).
    RTS

    Biographical history of technology > Ramsden, Jesse

  • 9 Zeiss, Carl

    [br]
    b. 11 September 1816 Weimar, Thuringia, Germany
    d. 3 December 1888 Jena, Saxony, Germany
    [br]
    German lens manufacturer who introduced scientific method to the production of compound microscopes and made possible the production of the first anastigmatic photographic objectives.
    [br]
    After completing his early education in Weimar, Zeiss became an apprentice to the engineer Dr Frederick Koerner. As part of his training, Zeiss was required to travel widely and he visited Vienna, Berlin, Stuttgart and Darmstadt to study his trade. In 1846 he set up a business of his own, an optical workshop in Jena, where he began manufacturing magnifying glasses and microscopes. Much of his work was naturally for the university there and he had the co-operation of some of the University staff in the development of precision instruments. By 1858 he was seeking to make more expensive compound microscopes, but he found the current techniques primitive and laborious. He decided that it was necessary to introduce scientific method to the design of the optics, and in 1866 he sought the advice of a professor of physics at the University of Jena, Ernst Abbe (1840–1905). It took Zeiss until 1869 to persuade Abbe to join his company, and two difficult years were spent working on the calculations before success was achieved. Within a few more years the Zeiss microscope had earned a worldwide reputation for quality. Abbe became a full partner in the Zeiss business in 1875. In 1880 Abbe began an association with Friedrich Otte Schott that was to lead to the establishment of the famous Jena glass works in 1884. With the support of the German government, Jena was to become the centre of world production of new optical glasses for photographic objectives.
    In 1886 the distinguished mathematician and optician Paul Rudolph joined Zeiss at Jena. After Zeiss's death, Rudolph went on to use the characteristics of the new glass to calculate the first anastigmatic lenses. Immediately successful and widely imitated, the anastigmats were also the first of a long series of Zeiss photographic objectives that were to be at the forefront of lens design for years to come. Abbe took over the management of the company and developed it into an internationally famous organization.
    [br]
    Further Reading
    L.W.Sipley, 1965, Photography's Great Inventors, Philadelphia (a brief biography). J.M.Eder, 1945, History of Photography, trans. E.Epstean, New York.
    K.J.Hume, 1980, A History of Engineering Metrology, London, 122–32 (includes a short account of Carl Zeiss and his company).
    JW / RTS

    Biographical history of technology > Zeiss, Carl

См. также в других словарях:

  • The Sorcerer's Apprentice — This article is about the poem by Goethe. For other uses, see Sorcerer s Apprentice. Illustration from around 1882 by S. Barth The Sorcerer s Apprentice is the English name of a poem by Goethe, Der Zauberlehrling, written in 1797. The poem is a… …   Wikipedia

  • Lores of Magic — The Lores of Magic in Games Workshop s Warhammer Fantasy setting are the styles of magic. Each style has a different theme of spells. The Realm of Chaos is the root of all magic in the Warhammer world. All races use the winds of magic that blow… …   Wikipedia

  • performing arts — arts or skills that require public performance, as acting, singing, or dancing. [1945 50] * * * ▪ 2009 Introduction Music Classical.       The last vestiges of the Cold War seemed to thaw for a moment on Feb. 26, 2008, when the unfamiliar strains …   Universalium

  • Die Meistersinger von Nürnberg — Richard Wagner …   Wikipedia

  • Jane and the Dragon (TV series) — This page refers to the television series. For the book series, see Jane and the Dragon . Infobox Television show name = Jane and the Dragon caption = format = Computer generated imagery runtime = Approx. 23 minutes creator = Martin Baynton… …   Wikipedia

  • Legoland Windsor — Infobox Amusement park name = LEGOLAND Windsor location = Windsor, Berkshire location2 = England location3 = United Kingdom flagicon|UK coordinates = 51.46351°N, 0.65114°W address = LEGOLAND Windsor Park Ltd, Winkfield Road, Windsor, Berkshire,… …   Wikipedia

  • Raphael — Infobox Artist bgcolour = #EEDD82 name = Raffaello Sanzio imagesize = 210px caption = Self portrait by Raphael, missing since World War II birthname = Raffaello Sanzio birthdate = birth date|mf=yes|1483|4|6|mf=y location = Urbino, Italy deathdate …   Wikipedia

  • Guild of Saint Luke — The Guild of Saint Luke was the most common name for a city guild for painters and other artists in early modern Europe, especially in the Low Countries. They were named in honor of the Evangelist Luke, the patron saint of artists, who was… …   Wikipedia

  • Список серий комиксов о Бэтмене — Batman #405 . Художник Дэвид Маззучелли О Бэтмене за долгие годы вышло множество постоянных серий (англ.)русск …   Википедия

  • Fraggle Rock — For the animated television series, see Fraggle Rock (animated TV series). Fraggle Rock Also known as Jim Henson s Fraggle Rock Created by Jim Henson …   Wikipedia

  • Jamalpur Gymkhana — The Jamalpur Gymkhana, often referred to as just Gymkhana (or merely Gym) by its members, is primarily a hostel for young apprentice officers of the Indian Railways. It is also a club like any other Gymkhana. A club to which the membership is… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»